Measure What Matters - Deployment Docs

Glossary:
1. VPS: Virtual private server
2. Node: Server side version of Javascript, this is what the server runs on and also
builds the frontend components
NPM: Node package manager, installs packages for node.
Yarn: Essentially npm with a new name.
5. Sudo: Is the command used when you would like to do things that require
admin privileges
6. PM2:Is what keeps the project processes running on the server, even if the
server is rebooted.
7. Docker:is a software layer that makes it easy to run pre-packaged appsin a
process that is isolated from the main machine.
Nginx: Provides a reverse proxy to our processes and exposes them on port 80.
9. Pipeline: Refers to an automated process on Github that can build and update
the application when new versions are released to master.

hw

o

Before you begin:
1. Determine where you would like to install the project. We will cover deploying
on a VPS (private server).
2. Setup proper firewall rules. Ports that should be open include: 22, 80, 443. All
others should be closed. This will be different depending on your VPS provider.

Setting up your VPS:
1. Connect to your VPS (see: How to Connect to an SSH Server)

a. Ensure you are connected as a non-root user who can run commands
with “sudo’. Enter command: "groups | grep sudo” and ensure the group
name “sudo” is printed.

2. Install build-essentials
a. Run command "sudo apt-get install build-essential -y
3. Install docker

a. Complete steps 1 & 2 from the following article: How to install Docker
on Ubuntu

b. When you get to the step that says “su - ${USER}", this will not work as
you may not know the password for the current user. (If the account was

https://www.howtogeek.com/311287/how-to-connect-to-an-ssh-server-from-windows-macos-or-linux/
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-20-04

part of the image from your VPS provider). Instead, logout of the ssh
session and reconnect.
c. Ensure you can run docker commands without sudo, run command
“docker run hello-world". If this was successful then you are good to go!
4. Install node
3. Run command "curl -L https://git.io/n-install | bash’, type 'y’ when prompted
b. Logout of your ssh session and reconnect again. Run node -v and ensure
a version is printed.
5. Install pm2
a. This is what keeps the server running if it crashes
b. Run command: ‘'npm install -g pm2°
6. Install yarn
a. npmi-gyarn
7. Install nginx
a. Run command: “sudo apt install nginx -y’
8. Your VPS should now be ready to deploy the application.

Deploy using git:

1. Clone the project
a. Run the following commands:
i. ‘cd
1. This should take you to the home directory
ii. ‘“gitclone
https://qgithub.com/UAlberta-CMPUT401/teamsnap-game-observa
tion.git mwm’
1. Provide your github credentials, this should clone the repo
into a directory called “mwm”
2. Ifit fails, please ensure that you have permission to view
the repository on Github
2. Install and build backend:
a. Run commands:
i. ‘cd mwm/backend’
ii. ‘yarninstall’
iii. “yarn build’
3. Install and build frontend:
a. Run commands:
i. ‘cd../frontend
ii. “npminstall’
iii. “npm run build’

https://github.com/UAlberta-CMPUT401/teamsnap-game-observation.git
https://github.com/UAlberta-CMPUT401/teamsnap-game-observation.git

4.

5.

Install and run the database:
a. Run commands:

Vi.

‘od'
1. This should take you to the home directory
"mkdir postgresData’
For some peace of mind and to make sure all is going well
1. Enter command: 'ls’, this should list “mwm n
postgresData”.
2. If they are all there, then you're doing a great job.
First, pick a password. This will be used to lock down the postgres
database in the next command
Secondly determine your user path, type “cd postgresData &&

pwd && cd ../
1. This should print a directory path, save this for the next
command

“docker run --name mwm-psql -e POSTGRES_DB=mwm -e
POSTGRES_USER=mwm -e
POSTGRES_PASSWORD=<YOUR_PASSWORD_HERE> -p 5432:5432 -v
<YOUR_DIRECTORY_PATH>:/var/lib/postgresql/data --restart
unless-stopped -d postgres:12°

1. Replace the password with the one you chose

2. Replace the directory path with the path from the
command ran previously. (with pwd).

3. An example command could be: ‘docker run --name
mwm-psql -e POSTGRES_DB=mwm -e POSTGRES_USER=mwm -e
POSTGRES_PASSWORD=VOtgTCqCIA3IpLEGQtV6GCVp -p
5432:5432 -v
/home/ubuntu/postgresData:/var/lib/postgresql/data
--restart unless-stopped -d postgres:12°

4. Run command: ‘docker ps’ and ensure there is a container
with the name “mwm-psql”.

Install nginx configuration
a. Run commands:

i.
ii.
i.
iv.

V.

‘cd mwm®

*sudo rm -rf /etc/nginx/sites-enabled/default’

*sudo ./bin/nginx/create_Ilnk.sh®

“sudo systemctl restart nginx’

Nginx should now be listening on the ports defined in the
ecosystem fFile.

6. Start the app processes
a. Run pm2 command:

i. 'pm2 restart ecosystem.config.js --update-env’
1. This will start the apps based on the definitions in the
ecosystem.config.js file.
ii. “pm2save’
1. This saves the state of your PM2 instances so that pm2 will
reboot them if the server is restarted.

b. Navigate the the IP of your VPS in the browser. If IPV4 this will be
something like: http://192.168.1.254/. If your VPS is running on the
flashy new IPV6 then it will be similar to:
http://[2605:fd00:4:1001:f816:3eff:fe34:d1f3]/.

7. Congratulations! The app is deployed on your vps. You can now hook up a
domain name and you'll be off to the races.

http://192.168.1.254/
http://[2605:fd00:4:1001:f816:3eff:fe34:d1f3]/

