

Client Needs and Software Requirements | 1

CLIENT NEEDS AND
SOFTWARE REQUIREMENTS

COURSE NOTES

Client Needs and Software Requirements | 2

Table of Contents

Course Overview ... 4

Module 1: Introduction to Requirements ... 5
Introduction ..5
What is a Requirement? ..7

Requirements Activities ... 8
Eliciting Requirements ... 8
Expressing Requirements ... 9
Prioritizing Requirements .. 9
Analyzing Requirements ... 9
Managing Requirements ... 10

Types of Requirements ... 10
Business Requirements .. 10
Business Rules ... 11
User Requirements .. 11
Functional Requirements .. 11
Non-functional Requirements ... 12
External Interfaces ... 13
Physical Setting .. 13
Development Constraints .. 13

Changing Requirements, Controlling Scope .. 13
Requirements and Design ... 15

Module 2: Client Interactions ... 16
User Considerations .. 16
Involving Clients and Users .. 17
Use Cases ... 19
Wireframes .. 22
Storyboards .. 23

Module 3: Writing Requirements... 26
Agile Requirements ... 26
User Stories .. 28
Acceptance Tests .. 30
Product Backlog ... 31
Story Maps .. 32

Module 4: Quality Requirements ... 34
Criteria for User Stories .. 34
Ambiguous Requirements .. 35

Indirect Language .. 36
Vague Words ... 36
Completion Words .. 37
Persuasion Words ... 37
Qualifiers ... 38
Comparatives .. 39
Quantities .. 39

Client Needs and Software Requirements | 3

Pronouns ... 40
Positional Words ... 40
Temporal Words ... 41
Joining Words .. 41

Client Needs and Software Requirements | 4

Course Overview

Upon completion of this course, you should:

 Be able to explain and create clear requirements in order to drive effective software development.
 Understand different types of requirements, and how to properly adapt to changes in product

requirements.
 Be able to visualize client requirements using low-fidelity prototypes such as wireframes and storyboards.
 Be able to identify and characterize different kinds of users and their needs.
 Be able to maximize the effectiveness of client interactions.
 Be able to express requirements with the help of tools such as user stories, acceptance tests, product

backlog, and story maps.
 Know how to assess requirements for quality and clarity.

Client Needs and Software Requirements | 5

Module 1: Introduction to Requirements

Introduction

Welcome to the Client Needs and Software Requirements course,
part of the University of Alberta’s Software Product Management
Specialization. This course will provide fundamental elements to
the specialization and will serve as one “leg” in the inukshuk that
depicts the structure of our specialization.

In the introductory course, you learned that making better software
involves three goals:

 The right product

 Done right

 Managed right

The right product means meeting the needs of your clients and end-users and not just their
wants. This involves understanding the problem they need to solve, and the tasks they need to
accomplish with the software.

To achieve done right and managed right, software development must start with a quality set of
software requirements, which are later planned, designed, implemented, and tested.

In this course, you will learn how to elicit needs from your clients and end-users. You will also
learn how to express these needs as a quality set of requirements to initiate software
development and planning activities.

Upon completion of this module, you should be able to:

 Describe and recognize what a requirement is,
 Describe the types of activities associated with requirements: elicitation, expression, prioritization,

analysis, management,
 Tell the difference between the different types of requirements: business requirements, business rules,

user requirements, functional requirements, non-functional requirements, external interfaces, physical
settings, and developer constraints,

 Recognize that changes are common to requirements,
 Describe the concepts of vision, and scope,
 Describe and defend against scope creep,
 Understand the concept of managing expectations, and
 Understand the difference between design and requirements.

Client Needs and Software Requirements | 6

There are four modules in this course.

Client Needs and Software Requirements | 7

Module 1 will cover:

 Types of software requirements

 How to handle changes to software requirements

 How to avoid scope creep

 The fuzzy boundary between requirements and design

Module 2 will cover:

 How to outline client and end-user needs

 The role of use cases in designing a product

 The visual design techniques of wireframes and storyboards

Module 3 will cover:

 How requirements become more functional within an Agile framework

 The use of user stories and acceptance tests to express and verify requirements

 The use of a product backlog to prioritize requirements

 Creating story maps to organize requirements

Module 4 will cover:

 Criteria for quality requirements

 How to make requirements as clear as possible

The techniques you learn through this course will help you create a better software product
suited to the needs of your clients and end-users.

What is a Requirement?

One of the most critical aspects of Software Product Management deal with conditions known
as requirements. Many definitions have been developed to describe “requirements.” A
requirement is most easily understood as a specific description of your client’s needs, which can
be used to help create a real-world product.

The Institute of Electrical and Electronics Engineers (IEEE) defines a requirement as:

1. A condition or capability needed by a user to solve a problem or achieve an objective.
2. A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed
documents.

3. A documented representation of a condition or capability as in (1) or (2). (IEEE, 1990).
Well-defined requirements help make sure client needs are understood and addressed and also

help detect potential problems before they become large and expensive to fix.

DID YOU KNOW?

The Institute of Electrical and Electronics Engineers (IEEE) is an international professional association of
engineers, scientists, software developers, and information technology professionals, among others.

The IEEE is well known for developing standards in both the computer and electronics industry.

Client Needs and Software Requirements | 8

Requirements Activities

In the previous course, Software Process and Agile Practices, software development is an
organized process, featuring a series of phases. Grouped within each phase is a series of one
or more activities—sets of related tasks. Requirements are established during activities at the
beginning of a project. It determines the purpose of a product and how the product can meet
that purpose.

This course will explore five important requirements activities:

1. Eliciting requirements

2. Expressing requirements

3. Prioritizing requirements

4. Analyzing requirements

5. Managing requirements

With these activities, the right requirements can be established, written in proper form, and even
improved.

Eliciting Requirements

The activity of eliciting requirements is an interactive and investigative process, which occurs
when meeting with the client and users.

Clients often have ideas about what features they would like in a product and what these
features should look like. Many clients, however, have limited knowledge of how software is built
and vague ideas regarding what makes a project successful. It can be difficult then for clients to
understand what they truly require in a product. It is the role of the software product manager to
help the client figure out what they “want” and what they “need.”

A “want” is usually a functionality or feature that the client would like the product to have, which
may add value, but is not necessarily core to the product itself. A “need,” on the other hand, is a
core functionality that the product must have in order to fulfill the product’s purpose. Needs
should take priority in product development.

The best way to discover and develop “needs” and “wants” with your client is through eliciting
requirements, where you engage in discussion about the product with your client. Through
discussion, the software product manager and team can help provide insights on what the client
“needs” and “wants” the product to do, and how these goals can be feasibly achieved. It may be
that the initial vision the client had of the product will have changed, but through involvement
with the software product team, any changes should feel proactive and the client should feel
reassured that the team understands users’ needs.

Note that eliciting requirements as “needs” and “wants” does not necessarily mean that all the
client’s features and ideas that fall in the “want” category are not doable or should be dismissed.
In fact, these ideas may be very good. But it is the role of the software product manager to
make sure that the goals are feasible, client expectations are realistic, and the product produced
is the best possible result.

Client Needs and Software Requirements | 9

Eliciting requirements should not be confused with “requirements gathering.” “Requirements
gathering” is the more passive approach of simply asking the client what they would like done,
and it often puts the development team in a reactive process. Eliciting requirements, however,
engages in in-depth discussion and collaboration from the start of product development, so both
the client and the development team work together to build a successful product.

Expressing Requirements

Once client needs have been established by eliciting requirements, the activity of expressing
requirements comes into play. Expressing requirements involves framing the requirements
identified through discussion in a way that allows a product to be built.

Often, requirements are first described through notes from meetings with clients. From there,
better and more concrete representations can be used for expressing requirements. Typical
representations include use cases, user stories, or storyboards, among others. These are
often tailored to the project. They could be simple or complex, textual or visual. It is up to the
software product manager and team to determine and use representations that would work best
for the project at hand.

Prioritizing Requirements

Once a vision of what needs to be done for the project has been established through both
eliciting and expressing requirements, it is important to prioritize client needs, especially in
Scrum methodology.

Questions to help establish priorities include:

 What requirements must be completed for
the project and product to be successful?

 What requirements should be done? In
other words, what is important but is not as
time-critical or could be satisfied another
way or at a later time on the project?

 What could be done to improve the project
or product but is not necessary? These
priorities are usually only included if both
time and resources allow for it.

Analyzing Requirements

The process of examining the listed requirements of a project to ensure that they are clear,
complete, and consistent is known as analyzing requirements. Analyzing requirements helps
ensure that the product is the best one possible. It is an important process, and a constant one.
A project must be continually evaluated and requirements improved as it progresses. This
adaptive nature is important in Agile systems.

MORE INFORMATION

The questions outlined here closely follow
the MoSCoW method of prioritization,
developed by Dai Clegg. This method is used
to help reach an understanding with clients
on the importance of each requirement.
“MoSCoW” is an acronym for the categories
of “Must have”, “Should have”, “Could
have” and “Would like but won’t get.” By
asking the questions suggested here,
requirements can be placed in these
categories.

Client Needs and Software Requirements | 10

Analyzing requirements helps to resolve any potential conflicting requirements or to identify
problems between requirements that might not be easily seen at first glance. It also ensures that
the requirements identified truly reflect and relate to the product being built.

Managing Requirements

The activity of managing requirements is also a continuous process. It involves the organizing
and re-organizing of requirements and possibly reusing subsets of requirements in different
stages. It also involves keeping track of priorities, analyses, and changes in requirements. This
is very important because everything is connected in a project. If something changes in one
requirement, it will affect other requirements and the development of the product.

Managing requirements also means ensuring that the identified requirements are central to the
many processes of product creation, including coding, testing, and change logs.

Types of Requirements

Now that we’ve covered what requirements are and the activities involved with getting them
right, let’s dive into a little more detail and introduce some different types of requirements.

This course will cover the following types of requirements:

 Business requirements

 Business rules

 User requirements

 Functional requirements

 Non-functional requirements

 External interfaces

 Physical product settings

 Development constraints

While business requirements and business rules can influence the project, it’s user
requirements, functional requirements, and non-functional requirements that are considered the
most essential requirements. Finally, external interfaces, physical product settings, and
development constraints are requirements that add context for design and implementation of the
product.

Business Requirements

There are many possible definitions for business requirements. In this course, business
requirements refer to those requirements that involve the purpose of the project. In business
requirements, goals are presented in concrete and specific terms. These goals are usually
tangible or quantifiable business values that can be used by business analysts.

An example of a business requirement might be: “The client needs to reduce errors in orders
made to their company by 25% by the end of next year to raise their yearly revenue by
$10,000.”

Client Needs and Software Requirements | 11

Business Rules

Business requirements should not be confused with business rules, although they are often
associated. Business requirements deal with why the project was pursued, while business rules
are constraints on how the product will function. Business rules are sometimes necessary to
make a project appropriate or successful. They are often budgets, policies, guidelines, or
regulations.

Examples of business rules include:

 Government or legal regulations

 Privacy policies

 Brand uniformity requirements

User Requirements

Users or end-users are the people who will use the software once it has been created. User
requirements are the tasks that these users can accomplish with the product, or what the
product can do for the user. User requirements are very important requirements to the project, if
not the most important. They are part of the core functionality of the product. For this reason,
determining user requirements is usually very time consuming.

There are many methods for expressing user requirements, including:

 Use cases

 User stories

 Storyboards

 Scenarios

Scenarios refer to cases where the client or end-user describes user requirements in their own
words. These descriptions can sometimes be vague or non-specific. It is part of the role of the
software product manager to help organize and refine their needs in more concrete manners, so
the development team knows how to best build the product.

Use cases, user stories, and storyboards are explored in more depth below.

Functional Requirements

Functional requirements are those behaviours that the developed product should do or
support. These are usually expressed as inputs into the product, outputs of the product, or a
description of the behaviour itself. For example, input might be data related to a user’s online
purchase, including name, address, item purchased, and payment information. The output in
this scenario might be a notification email after the transaction is performed.

Often, functional requirements need to be expressed with depth and specificity. Information
flow diagrams are a graphical technique commonly used to show how data flows throughout

Client Needs and Software Requirements | 12

the system and the dependencies of all the system components. Together, an information flow
diagram shows how the entire system functions.

The following is an example of an information flow diagram for a customer using a credit card
with a product, and where the credit card information is verified before a receipt is generated for
the user.

Non-functional Requirements

In addition to functional requirements, there are non-functional requirements that describe
how well a product must perform. They are also known as quality requirements for this reason.
Non-functional requirements address product issues including accuracy, dependability, security,
usability, efficiency, performance, and maintainability.

Information flow diagrams or data flow diagrams are visual techniques used to show how information or data
moves through a system. The information may change as it moves from input to output of the system. These
diagrams are useful for show how users can interact with the product.

Information flow diagrams can be partitioned into levels that show progressive flow and increased detail.
Information flow diagrams are valuable tools because they can describe the system process without relying on
details related to computer systems.

Below is an example of the format of an information flow diagram might take.

Client Needs and Software Requirements | 13

Drawing on the online purchasing example used in functional requirements, a non-functional
requirement in the same scenario would be that emails should be delivered to users within two
hours of purchase. Non-functional requirements are usually complementary to functional
requirements.

External Interfaces

External interfaces requirements refer to those requirements related to how the product is
situated within a larger system. In other words, external interfaces do not concern themselves
with the physical environment of the product, but rather they are concerned with the relationship
of the product to other entities outside the product.

For example, a software application that retrieved information from a remote database to display
to users sits between the entities of the database and the end-user. An external interface is
used between each one. Interfaces also involve the way connections are made through media,
protocols, formats, and levels of compatibility.

External interfaces can be represented within data flow diagrams that show all the components
of a product, including outside entities. These data flow diagrams make explicit reference to the
flow of data from other entities and the product within an entire system.

Physical Setting

Physical setting requirements refer to how the product needs to be designed in order to
function in its physical environment. For example, if a product was being developed for
underwater exploration, it would need to be waterproof. Similarly, if the product was designed
for use in the desert, or in Antarctica, it would need to withstand and function in those
environments.

Development Constraints

Development constraints affect everything from implementation technology, conventions,
documentation, and the process used to develop the product. They generally refer to constraints
related to creating the product, such as which devices or platforms will be supported, or how
much memory, bandwidth, or processing power the product is limited to using.

It is beneficial to address development constraints as late as possible in the specification phase
because technology changes rapidly.

Changing Requirements, Controlling Scope

When a product is designed, it is guided by a principle known as product vision. The product
vision is what outlines the value of a product to the client and its place within the wider market.
It relates to the purpose of the product, as well as the problem or need the product sets out to

Client Needs and Software Requirements | 14

solve. Any changes that occur in the project should fall within the vision of the product. In other
words, changes to the project should not change the purpose of the product.

Visions can become problematic if they are not realistic. Scope is defined as what a project can
realistically achieve. It is an important aspect of the project that has the power to greatly affect
development teams and product managers.

Defining scope is an important part of the project, and it is best done during the requirements
elicitation activity of the project. It is also important to manage client expectations during this
process and not to over-promise what the development team can realistically deliver. A good
strategy for managing expectations is to identify what will not be included in a product, so client
expectations are clear.

Scope creep happens when the scope of a project grows as the result of an increase or change
in requirements. Consequently, the likelihood of project success usually significantly lowers over
time.

For example, the vision of a project could be designing a game to teach cardiopulmonary
resuscitation (CPR) to users. A change in scope could involve switching the platform on which
the game is designed once development has already started. This change could drastically
affect the success of the project.

Changes are common to software requirements and need to be accounted for. Strategies for
defending against scope creep include:

 Making expectations clear between client and team.

 Drawing the scope with the client through tools such as use case diagrams.

 Asking the client to prioritize requirements so that the most important ones can be

developed early.

 Asking “Is this in scope?” when refining requirements to avoid spending excess time

working on unnecessary requirements or capabilities better suited to later releases.

Providing concrete time frames for developing requirements with clear beginning and end dates
also helps determine whether the requirement is realistically doable and within the scope of the
project. Estimating time frames is a skill that software product managers refine and improve with
time.

American software engineer, consultant, and author Karl Wiegers has defined both vision and scope. The
definitions are:

Vision is a “long-term strategic concept of the ultimate purpose and form of a new system.” (Wiegers,
2012, p. 1)

Scope is what “draws the boundary between what’s in and what’s out for the project.” (Wiegers, 2012, p.
1)

We can see that the two concepts are interrelated and why scope is so important to project development.
Defining the scope ensures that the project undertaken is not only possible but also successful.

Client Needs and Software Requirements | 15

A core principle of the Agile manifesto is evaluating each proposed change on a case-by-case
basis and how that change might affect the project. Changes should be introduced to increase
the project’s business success. Any accepted changes should also entail revisions in estimates
and plans for product development.

Requirements and Design

In Agile, sometimes the lines between forming requirements and designing a product become
blurred. Requirements focus on what the product is designed to do, while design focuses on
how the product can satisfy user needs.

It is common for both requirements and design to be worked on simultaneously, and
requirements could be formed with elements of design in mind. The use of techniques such as
product drawings can also help identify whether requirements fit together as a whole and are
correct, consistent, and clear. Often, clients will also think of their product and focus on desired
design characteristics. It is part of the role of the software product manager to help the client
understand what their true problems or needs are in that case.

The software product manager must also be careful not to impose unnecessary constraints on
the product by blurring requirements and design. For example, an aspect of design such as the
coding language or interface features could potentially limit a product, and it should not be
confused with being a requirement.

Strategies for avoiding problems in blurring requirements and design include asking the
following questions:

 Is the solution just a possible option?

 Is the solution the only one possible?

 Is the solution addressing the wrong problem?

 Is the solution just to attract developer interest?

 Is the client more “solution focused”?

Client Needs and Software Requirements | 16

Module 2: Client Interactions

User Considerations

When designing a product, one of the most important things to take into consideration is the
end-user. End-users are the people who will use the product. They are among the stakeholders
of the project.

A stakeholder is anyone affected by or who has an effect on the success of the project, such
as end-users, clients, managers of end-users, and system administrators. A successful project
addresses the needs of all stakeholders.

There are three types of stakeholders or users: primary users, secondary users, and tertiary
users.

Primary users are end-users, or the people who will use the product. Secondary users are
those people who will occasionally use the product or use it through an intermediary. They may
not be the target audience, but they could be related to the target audience in some way, such
as parents of children who use a product designed for children. Tertiary users are those who
are affected by the use of the product or make decisions about the product, such as clients.

A product should be designed to be something users can navigate and want to use. This is
primarily accomplished through good user interface (UI) design. UI is what is seen when using
the product, and it can encompass anything an end-user interacts with—features such as
windows, buttons, scrollbars, checkboxes, and text boxes. Good UI design is important. If there
are many similar products on the market, users will easily move on to another product if they do
not like what they are currently using. An entire discipline known as human computer
interaction (HCI) studies how end-users interact with technology products. More information on
HCI is available in the course resources.

A number of issues that may arise in considering user interactions include:

 Users have an inability to express what they need

Upon completion of this module, you should be able to:

 Describe who a user is, and tell the difference between primary, secondary, and tertiary users,
including stakeholders.

 Explain strategies for involving clients in software development, including:
o Managing client expectations,
o The kinds of questions to ask to discover and refine requirements and needs,
o The benefits of using a glossary.

 Create a use case description, including: name, actors, goal, trigger, pre-condition, post-condition,
basic flow, and exceptions.

 Create a wireframe and recognize the requirements it expresses.

 Create a storyboard and recognize the requirements it expresses.

Client Needs and Software Requirements | 17

 Users are biased by previous experiences; e.g., a user is more likely to use a bad
interface that they are familiar with rather than a new one, even if the newer one is
actually a better product

 Developers sometimes have trouble seeing through a user’s point of view because of
their advanced knowledge of technology

Creating an intuitive, user-friendly interface is key to addressing many of these issues. A good
strategy to consider is to design a product for both beginner users and expert users. In general,
the design will then accommodate intermediate users as well.

When designing software, it is also important to consider the numerous limitations users are
faced with. These limitations are related to human limitations. They include:

 Perceptual or sensory limitations, which are caused by restrictions of the five senses.
Colour blindness is an example of a sensory limitation.

 Physical limitations, which affect how a user physically interacts with or uses a
product. An example is left- or right-handedness.

 Cognitive or memory limitations,
where people can only remember so
many things at once, so it is
important to use visuals in design
that are familiar or suggestive to help
identification.

 Cultural limitations, which
encompass how different cultural
backgrounds of potential users can
affect interpretation of design
elements, such as symbols and
icons, layout, multimedia, and
translation needs.

More information on cultural limitations is available in the course resources.

Involving Clients and Users

In Eliciting Requirements, the importance of involving clients was emphasized. A good
software product manager and development team do not simply gather ideas from clients but
actively collaborate with clients. Consequently, client ideas may change from the outset of
discussions, but with input from both the team and the client, the best possible product can be
made.

Requirements can also come from other sources, including:

 Interviews with end-users

 Feasibility studies with focus groups

 Observing how end-users use the product

MORE INFORMATION

George A. Miller, one of the founders of the field of
cognitive psychology, discovered that humans have an
average limit for short-term memory capacity. People
can remember between five and nine things, with seven
being the average. Distractions limit memory even more.

Good product designers understand this memory
limitation and work with metaphors and symbols that
users will be familiar with, so there is less for them to
remember!

Client Needs and Software Requirements | 18

 Consulting previous products

Involving clients in collaborative discussion over requirements, usually in face-to-face meetings,
helps manage client expectations. By being involved in discussion, clients are aware of realistic
goals and timelines, what will and will not be done in the product, and subsequently they can
prioritize requirements.

Below are some key points to remember when interacting with clients.

Try to keep a good balance between being assertive and open to client ideas and perspectives.
It is not good to just accept ideas passively. The software product manager and development
team should suggest ideas and perspectives in meeting with the client, but they should not
enforce their viewpoints aggressively.

The software product manager should try to provide structure in conversations with the client
about requirements. This will help the client organize his or her thoughts. Care must be taken
not to steer the client, however.

Clients sometimes come with set ideas about what they want in a product. However, they
sometimes don’t know what is possible technically, or they have ideas that would actually be
hard for end-users to understand or use. The software product manager should try to
understand why the client has set upon these ideas. A good way to do this is to ask the client to
explain how they envision an end-user interacting with the product. Once the client’s reasoning
is understood, alternative ideas can be
suggested. It may also be useful to
politely highlight why certain ideas may
not work. This can also be done
through exploring limitations and
different scenarios.

Note that it is the role of the software
product manager to make sure a client
is well informed and understands their
options. However, at the end of the
day, the client is the one who makes
the key decisions regarding
requirement, even if the development
team would prefer to go a different
route.

Requirements should be revisited often with the client. After a first meeting, for example, it is a
good idea to show the client mock-ups and prototypes produced from initial discussions. With
these concrete tools, clients can more readily identify what they like in a product, what they
want, and what they dislike. Revisiting requirements also allows clients to answer questions,
advise on design choices, and provide feedback.

TIP: A good way to involve clients and to understand their
requirements is to ask good questions!

Good questions are open-ended and cannot be answered
with a simple yes or no. Questions that ask “why?” are
particularly good, because they encourage a client to
analyze and identify their core needs. Simon Sinek’s Ted Talk
on asking “Why?” gives a good explanation of what makes
this question valuable, which is available in class resources.

“What do you want?” or “What are your requirements?” are
less useful questions because they are too broad and do not
provide good structure for understanding client needs.

TIP: It is good practice to number requirements with unique identifiers throughout the project, so they are easy
to reference as the project develops!

Client Needs and Software Requirements | 19

An important tool for interacting with clients is the use and creation of a glossary. A glossary is
a list of terms and their definitions that relate specifically to the product being built. It is common
for many different terms to be generated for the same thing if a glossary is not used and agreed
upon, which can make discussions confusing.

In summary, key aspects to remember in customer interaction include:

 Involve the client through meetings and continuous re-visitation of requirements.

 Use other information sources, such as end users.

 Ask good questions.

 Be assertive and open in client interactions.

 Clearly communicate realistic requirements and timelines to manage client expectations.

 Use common terms via glossaries.

 Keep track of requirements

 Remember that it is the responsibility of the software product manager to clearly

communicate the pros and cons of requirements, but the client is the one who must

make the key-level requirement decisions.

Use Cases

Use cases, developed by Ivar Jacobson in 1986, are a good tool for understanding a product.
They can be defined as a way to identify, clarify, and organize details of a task within a product.
Uses cases take place in particular environments to achieve particular goals. In other words, it’s
a way of explaining a set of sequential interactions users might have with the features of a
product.

A good use case outlines the proposed task from the point of view of a participating actor
(usually a user), and it should not require deep knowledge of technology to understand. Use
cases may be presented in tables as outlined below.

Client Needs and Software Requirements | 20

Use case elements are defined as follows:

Name This refers to the name or title given to the use case. It should
describe the task being undertaken, but it should also remain short
and simple.

Participating Actors The participating actors are the people envisioned to be engaging in
the action of the use case. Participating actors are described by the
roles of the person and what they do with the product.

Goals The goals describe the intended objectives of the use case.

Triggers The triggers of a use case are the events that prompt the use case to
begin.

Pre-Condition Pre-conditions are the conditions that must be in place before the
use case can occur.

Post-Condition Post-conditions are the conditions that become true once the use
case is complete.

Basic Flow The basic flow is a step-by-step description of what occurs in a use
case.

Basic flows usually describe sunny-day scenarios (also known as
best-case scenarios), which are situations where everything works
perfectly. Other scenarios are outlined in alternate flows, if necessary.

Alternate Flows An alternate flow is presented as a case where things go in a
different way from the sunny-day scenario of the basic flow.

Exceptions Exceptions are situations where the use case would not work. The
step in the basic flow where the exception occurs should be identified,
and alternate steps should be proposed to resolve the problem.

Qualities Qualities are the quality specifications you would like the product to
meet. These are often non-functional requirements, such as time
frames, or monetary restrictions. These conditions are determined
through client and development team discussions and set standards
through the project.

Client Needs and Software Requirements | 21

For example, a completed use case would look like:

It is helpful to depict the use cases of a product with a diagram (see below). Use case diagrams
are high-level, visual representations outlining all the tasks supported by the product being
created. Actors and their respective uses cases are also represented. Overall, the diagram
should show the entire product, tasks that may be undertaken while engaging with the product,
and roles supported by the product.

Client Needs and Software Requirements | 22

Use cases are a useful tool for software product managers and their development teams when
establishing requirements. By creating use cases and sharing them with clients, the project has
more definite guidelines, and development tasks become more organized and elaborate.

Wireframes

One of the most important techniques of product development is the use of wireframes. A
wireframe, also known as a mock-up, can be thought of as a kind of early blueprint. It is a basic
visual representation of the product. See the example below of what a biography web page
might look like.

Wireframes are used for many purposes. These include:

 getting an idea for what will be developed

 demonstrating ideas to clients or users and encouraging their feedback and involvement

 communication among the development team

 helping the client or users communicate with the software product manager and team
(some people may find it easier to sketch out their ideas to describe them)

Although a visual representation, a key aspect of wireframes is their simplicity. Wireframes are
not meant to be a demo of the interface of a product but rather outline basic functionalities and
end-user tasks. This means that wireframes do not use colours or images. In fact, it is important
that detailed design features do not creep in to wireframes.

Client Needs and Software Requirements | 23

Instead, wireframes may suggest things like where buttons, text fields, and images are placed.
The elements displayed should theoretically allow a user to do a task with the product. As in a
blueprint for a house, for example, details such as wall colours or lighting fixtures are not
outlined. Later, detailed user interface (UI) design can develop further.

Wireframes are usually developed quickly after an initial discussion with the client regarding
requirements and presented thereafter. Clients then have a chance to see an early version of
what their product might look like and provide feedback. It also ensures that both the client and
development team are working towards the same vision.

Storyboards

Another technique used to help in forming requirements are storyboards. Many disciplines make
use of storyboards. In software development, storyboards are sequential, visual
representations of an interaction with the software product.

There are two main types of storyboards. Both types can be helpful for discussions between
clients and the development team. Storyboards help to elicit further requirements of the product
and refine existing ones.

The first type of storyboard describes high-level user experience with the product. This type of
storyboard tends to look like a comic strip, where each action is illustrated in the sequence or
flow of using a product, including the decision to use the product and outcomes at the end of an
interaction. If multiple features are offered in the product, then each should get a storyboard.

An example of this first type of storyboard appears on the following page.

TIP: There are many tools to help develop wireframes! You can always draw images by hand and then scan
them, but there are many drawing tools on the computer that can help you create wireframes.

Some examples are:

 Google Docs

 Microsoft Powerpoint

 Balsamiq (online tool available at https://balsamiq.com/)

 OmniGraffle (a paid app available at https://www.omnigroup.com/omnigraffle/)

 Wirify (a tool which turns any web page into a wireframe, available at http://www.wirify.com/)

Some examples of wireframes can be found at http://wireframes.tumblr.com/

https://balsamiq.com/
https://www.omnigroup.com/omnigraffle/
http://www.wirify.com/
http://wireframes.tumblr.com/

Client Needs and Software Requirements | 24

Captains in the panels should read:

1. The Smith family decided to go to Brampton’s Pizza for a nice family dinner.
2. They are seated at a table and use the tablets at the table to browse the menu.
3. They browse the dishes on the application and place their order.
4. The cooks in the kitchen receive the order.
5. The food was delivered to the table once it was read and they have a nice family dinner.
6. Once they were finished their meal, the mother viewed and paid for the bill on the

application.

Generally, the envisioned user, or participating actor (as described in use cases) in this type of
storyboard, is given a persona. Personas provide more elaborate back stories to the
participating actors, including details such as age, ethnicity, income level, job, personality, etc.
Providing high-level details helps the storyboard address specific issues.

The first type of storyboard has many potential uses, including:

 Ensuring the entire development team is on the same page

 Enhancing the possibility of identifying features to improve or create in the software
product

 Ensuring the vision of the product remains clear in its use

 Use in marketing or demos

The second type of storyboard combines wireframes and basic flow from use cases in order to
show how the end-user interacts with the user interface of the product in detail. It is more
closely related to software design.

It also shows all the sequences of user interaction with the product, and the outcomes of those
interactions. Each state of the product during interaction is illustrated with a wireframe. The user

Client Needs and Software Requirements | 25

interface element needed to get to the next state is also illustrated. Transitions between states
are generally depicted with an arrowed line.

The second type of storyboard has many potential uses, including:

 Helping the development team to design requirements

 Helping identify what could be overly complicated or missing in supporting tasks the
users perform

 Ensuring the development team is aware of the functionalities and feel of the product

 Guiding technical writers in creating training materials

Below is an example of the second type of storyboard.

Client Needs and Software Requirements | 26

Module 3: Writing Requirements

As we just saw, requirements can be expressed through techniques such as use cases,
wireframes, and storyboards, but they can also be expressed through many written formats.

Agile Requirements

Client needs and requirements may be expressed within the philosophy of Agile Software
Development. There are 12 principles of Agile Software Development, as explained in the
Introduction to Software Product Management course and the Software Processes and
Agile Practices course. These principles support the belief in Agile that software is dynamic. In
other words, in Agile, software cannot be simply defined once and then created off that singular
definition—it is constantly evolving.

In concurrence with this philosophy, clients often change their minds about product functionality.
This can happen even in the middle of development. In Agile software development, however,
changing requirements should be welcomed and expected. The ability to welcome changing
requirements can make the difference between the success or failure of a project. Development
teams should understand that although requirements are created with full intentions of following
through, requirements also inevitably change.

Upon completion of this module, you should be able to:

 Describe requirements within the 12 Agile principles.

 Create a user story and recognize the format of a user story.

 Assess what makes a good user story.

 Recognize when a user story is too large (in other words, you should be able to recognize an epic user
story), and why this is likely to occur in the specification phase.

 Create an acceptance test for user stories based on acceptance criteria.

 Explain what a product backlog is, and help prioritize user stories.

 Describe what product backlog is and how it works within Scrum.

 Create a story map, and identify the benefits of using a story map.

 Identify any missing or inconsistent user stories within a story map.

Client Needs and Software Requirements | 27

Client Needs and Software Requirements | 28

According to Agile, face-to-face interactions with clients is key to ensuring requirements are
right, even as they change. Requirements should be elicited in an open and collaborative
setting, as discussed in Eliciting Requirements. Although the vision of the product should
come from the client, software product managers often help narrow the vision and outline what
requirements are within scope of the project. These meetings are also an opportunity for
discussion of the inevitable changes in requirements. As explained in the Software Process
and Agile Practices course, this is frequently practiced in Scrum.

Collaborative discussions with the client help to ensure that project requirements are the best
possible, and they set the precedent for communication.

Requirements are an integral part of Agile. In turn, if Agile is followed in creating requirements,
quality is enhanced.

User Stories

User stories are a major technique used to express requirements, like use cases, wireframes,
and storyboards. User stories are special because they use a consistent format to express
requirements that is easy to write, read, and evaluate.

User stories take the following format:

“As a ‘who,’ I want to ‘what,’ so that ‘why.’”

The “who” of the requirement is the stakeholder role for whom the requirement is being formed.
The requirement should be written as if it is from this person’s point of view.

The “what” of the requirement is the specific task or functionality the stakeholder wants to
achieve by using the product.

The “why” of the requirement highlights the goals or visions of the product, and it provides
insight into the value or benefit of the requirement.

An example of a user story based on the restaurant example previously used in this course
could be, “As a customer, I want to be able to identify dietary restrictions, so that I know I can
eat the food I order.”

User stories are useful, as they provide a clear and structured way to express a requirement
that also does not use too many technical details. Unlike freely formed requirements, user
stories ensure the “who,” “what,” and “why” of a requirement are always accounted for. User
stories are also useful because they are short and can be easily written on physical index cards
or sticky notes. This practice allows easy organization of requirements, which can be re-
organized when requirements change.

Client Needs and Software Requirements | 29

Classically, user stories were written on index cards. The front of the card contained the user
story, and the back held the acceptance criteria, which we’ll cover later. With software build to
help track software development progress, user stories are no longer constrained by the size of
the card. However, when creating your user stories, keep in mind that shorter is usually better,
as that forces you to make your requirements understandable and actionable.

If you have any doubts about the size of a story, try writing it on an index card in the format
below. If you have trouble getting your ideas to fit, try re-wording things to be more clear and
concise.

Although clients should write user stories, as they know best what they want in a product,
software product managers often write or help write user stories because they are more
experienced in doing so.

User stories can be evaluated using the mnemonic INVEST. A good user story outlines a
specific software requirement in the product.

I Independent
This means the requirement can exist outside of other user stories and still be
meaningful. This allows for requirements and their user stories to be freely re-
arranged if necessary.

N Negotiable
User stories should also be general enough for the development team and
client to work around their implementation. They should not focus on specific
technical details. Instead, focus should be on the most important aspects of
requirements, while remembering that these could change.

V Valuable
User stories should bring value to the client.

E Estimatable
It should be possible to estimate how much time it would take to design and
implement the requirement in the user story.

Client Needs and Software Requirements | 30

S Small
A user story should be small because it is meant to be developed in a short time
period. If the time to design and implement a requirement is uncertain, the user
story is likely too big, so it should be broken down into smaller, manageable
ones.

T Testable
User stories should be verifiable against a set of criteria in order to determine if
it is “done”, meaning that the user story has accomplished what it set out to do,
and does not need further work. This is usually accomplished with acceptance
tests.

If a user story contains descriptions that are too vague or broad, and if it is difficult to estimate
how long it will take or how it can be done, it is probably an epic user story. Epic user stories
usually occur at the beginning of a project when the product is still developing and may not yet
have definite form. This is due to the pattern
known as the “cone of uncertainty,” which
suggests that the time estimates to develop a
user story become less accurate the further
into the future the feature is intended to be
developed. Even experienced development
teams encounter epic user stories.

In order to avoid writing epic user stories, it is
important to be able to identify when one has
been created. If an epic has been identified, it
can be broken down into smaller stories,
which can be estimated. A good strategy to
avoid epic user stories is to provide just
enough information for a developer to
understand how to implement it, but not so
much information that implementation details
become part of the story.

Acceptance Tests

An acceptance test is used to verify whether or not the requirements of a user story have been
completed. Acceptance tests are often used in the testable part of the mnemonic INVEST. A
user story is considered satisfied if the test is passed.

Acceptance tests are evaluated based on a set of acceptance criteria. Acceptance criteria are
simple with specific conditions used to check if a user story has been implemented correctly.

Clear, straightforward language should be used in creating acceptance tests.

Acceptance criteria are usually determined by the client’s specific needs. In order to turn
acceptance criteria into an acceptance test, it is helpful to go through the steps of the criteria.

Example of an epic user story:

“As a customer, I want to pay for my bill, so I can

settle what I owe quickly.”

This user story could be broken down into smaller
ones, such as:

 “As a customer, I want to be able to see a
bill, with all of the items in that order, so I
can see how much my order will cost.”

 “As a customer, I want to be able to select
a “pay now” option when I view my bill, so
I can pay the bill immediately.”

 “As a customer, I want to be able to enter
my payment details for VISA and
MasterCard credit cards, so I can pay using
a convenient method.”

Client Needs and Software Requirements | 31

Each test should assess one verifiable condition that makes up one small part of the user story.
If all tests are passed, then the acceptance criterion is passed. If all acceptance tests are
passed for all of the user story’s acceptance criteria, then the user story is considered

successfully tested.

Acceptance tests have many other added benefits. They allow the development team to view
requirements from user perspectives. They also help with determining functionality of the
product, as they provide details not present in the user story. These details can help outline
developer tasks and how those might be finished. Acceptance tests can also help avoid epic
user stories. An excessive number of acceptance criteria suggests that a user story should be
broken up into smaller pieces.

Like user stories, acceptance tests should be developed by the client with help from the
software product manager and development team.

Product Backlog

A product backlog is a set or list of software features that the software product manager and
development team plan to develop for a product over the course of a project. They are a means
of organizing work, prioritizing tasks within the project, and planning those priorities. Product
backlogs are a popular technique because they provide a lot of flexibility for both clients and
development teams. They are critical to Scrum and therefore Agile.

Features in product backlogs include work tasks (physical jobs that must be done on the project
but are not necessarily related to developing product features), knowledge tasks (work for parts
of the project that need to be learned), bugs (errors in product code), and most commonly, user
stories. All tasks in product backlogs tend to become more refined over time.

Building on the restaurant example used throughout this course, examples of acceptance criteria for the user
story “As a customer, I want to be able to enter my payment details using VISA and MasterCard credit cards so
I can pay using a convenient method” include:

 Payment can be made using a VISA credit card.
 Payment can be made using a MasterCard credit card.
 Payment can be made using an online financial service.
 When paying with a credit card, filling in the “card number” field auto-detects the card type.
 The customer sees only the relevant input fields, depending on the selected payment method.

To turn a criterion into an acceptance test, it is helpful to create a few steps. For example, for “Payment can be
made using a VISA credit card,” tests could be:

 Insert a VISA card into a chip reader.
 Enter the VISA’s PIN number.
 Confirm the payment was accepted.

Going through these steps verifies the acceptance criterion.

Client Needs and Software Requirements | 32

In order to create a product backlog, after user stories are created, they should be placed in a
list. Each user story should also be assigned a unique identifier. Identifiers can be as simple as
sequential numbers.

The next step in creating a product backlog is to prioritize the user stories and features. The
process of prioritization helps clients identify their needs and wants. It also gives developers
perspective and focus by highlighting what is most important in a project. Prioritization also
helps determine what features can feasibly be accomplished in a project with technology and
given resources.

As prioritization is important for the entire team, prioritizing user stories in product backlog is
best done through discussions between clients, the software product manager, and the
development team. Why a user story is important will be clearer to everyone through such
discussions, as well as why an effort estimate has value.

Using the product backlog, the development team can start to plan the project using priorities as
reference points (for more information on this, see the Agile Planning and Software Products
course). User stories from product backlogs are grouped together into units of work to be done
at certain time intervals. In Scrum, these intervals are known as sprints. The most important
features from product backlogs should be finished earlier, while less important ones can be
finished later.

Product backlogs are very flexible in light of this kind of development. Scrum focuses on
developing one sprint at a time. Although the sprint in development should not change, sprints
beyond the one being worked on are able to change. At the end of a sprint, clients can evaluate
the work done and add new user stories or requirements for the product, or change the priority
of existing user stories or requirements. The next sprint can be adjusted accordingly.

Product backlogs will therefore change over time and can become smaller, bigger, or have
changed orders. Such adaptability and versatility is encouraged in Agile methods.

Story Maps

Story maps are used to organize requirements and help structure a project. Story maps
support change on a higher level than even product backlogs. They present product backlogs in
a visual manner, with user stories grouped into specific functional categories. By covering and
prioritizing user stories across multiple categories, story maps provide holistic views of the
product being developed.

Story maps have a specific structure. They are created as sets of columns. Each column
represents a category for grouping user stories together. Within each column, user stories are
prioritized from most to least important. This structure allows the client, software product
manager, and development team to see the highest priority user stories for an entire project.
While a list of requirements with the structure of a product backlog might be overwhelming, story
maps turn such lists into manageable, organized sets of features to be implemented over the
course of a project.

Below is an example of what a story map structure might look like.

Client Needs and Software Requirements | 33

Story maps have many benefits, including:

 Simplifying prioritization of user stories

 Giving product backlogs a trackable, visual feel

 Giving perspective on how user stories may relate to one another

 Helping identify what might be missing from each category

 Providing context for developers by showing that other simple functionality may best be
implemented before more complex work

 Providing a holistic view of the product by not allowing focus on one category only, but

instead emphasizing the multiple functionalities (or categories) of most products

 Giving a better understanding of how the product will develop and fit together over
stages—it is possible to see how a product will evolve row by row, which could save time
over the course of the project.

Story maps are a good example of the Agile principle of building working software because of its
emphasis on multiple functionalities.

It is important to remember that a story map is not a Kanban board. A Kanban board, as
discussed in Software Process and Agile Practices, is a visual tool used to display the
project’s current state and to keep track of progress of project tasks. In contrast, a story map is
used only as a tool to plan and organize user stories. Story maps, however, are not full-fledged
development plans either.

Client Needs and Software Requirements | 34

Module 4: Quality Requirements

Criteria for User Stories

It is possible to evaluate the quality of user stories using a set of criteria. Quality user stories are
important for guiding development in order to avoid mistakes and confusion. Accordingly, there
should be no missing user stories, and existing user stories should be easy to understand and
free of ambiguity.

The previous module covered the INVEST mnemonic. The INVEST mnemonic outlines the
criteria that quality user stories should meet. To build on that lesson, there are some additional
criteria that user stories should meet in order to ensure quality.

High quality user stories help to keep development on track and to avoid mistakes and
confusion. For example, user stories should be defined in such a way that they are small and
simple to understand, provide value, and can be clearly tested as being done.

Beyond the INVEST mnemonic, there are several other criteria that requirements and user
stories should meet in order to ensure quality:

Correct User stories must be correct or the development team will create features that
are not in line with the client’s vision. Time is then wasted on both the creation of
incorrect features and removing them later.

Complete A complete user story is one where all requirements necessary to describe the
problem are included. If requirements are missing, those features will be lost in
the final product.

Story maps are often used to identify any missing requirements.

Upon completion of this module, you should be able to:

 Recall the INVEST mnemonic

 Describe the criteria used to assess whether or not a user story is good: correct, complete, clear,
consistent, feasible, and traceable.

 Recognize a “correct” user story.

 Recognize when user stories conflict.

 Identify an ambiguous requirement.

 Recognize common terms that might contribute to making a user story ambiguous.

 Clarify an ambiguous term within a user story.

Client Needs and Software Requirements | 35

Clear User stories are clear if they are easy to understand and can only be interpreted
one way. If ambiguities are left in user stories, then a product may end up being
developed differently than the way the client envisioned, or the product could be
tested a different way from either of those two interpretations.

Requirements Technical Review and Repair exercises are used to reduce
ambiguities. These exercises bring in outsiders to the project to review
requirements based on the criteria listed here. Wireframes and storyboards,
among other visual tools, can also help eliminate ambiguities.

Consistent This criterion requires verifying that requirements do not conflict with one
another.

Feasible A feasible user story is one that can be realistically implemented when the
limitations of the product are taken into account. This includes the technology,
tools, resources, and personnel available, as well as the budget and schedule. If
a user story is not feasible, it will likely incur additional costs and a decline in
satisfaction from clients.

Traceable User stories should be traceable, meaning that each requirement in a user story
should be able to be tracked throughout the project. Every requirement has
corresponding code and tests.

Requirements should therefore be connected to these associated design and
implementation artifacts through a tracking mechanism. This ensures that only
necessary code is written and that all requirements are tested.

A technique where unique identifiers are assigned to each requirement is often
used to facilitate the tracking of a requirement within product code, tests, bug
reports, and change logs. Unique identifiers can be as simple as sequential
numbers.

Ambiguous Requirements

Requirements may encounter problems if they are ambiguous. A requirements can be
ambiguous if it has multiple interpretations, or if it does not provide all necessary details. This
leads to miscommunication between the development team and the client, and potentially
incorrect software. Avoiding ambiguous requirements saves time and money.

It is understood that many readers of this text are not
native English speakers. Because of this, the ambiguous
words that will be covered in this lesson have been
divided into several categories of ambiguous words, in the
hope that you will be able to translate the rules into the
language that you are conducting business in.

The eleven categories of ambiguous words that will be explored in this lesson are:

 Indirect Words
 Vague Words
 Persuasion Words
 Completion Words
 Qualifiers

 Comparatives
 Quantities
 Pronouns
 Positional Words
 Temporal Words, and

TIP: The words explored in this lesson
do not always lead to ambiguous
requirements, they just need to be
used appropriately. You may need to
add some additional information to
remove the ambiguity.

Client Needs and Software Requirements | 36

 Joining Word

Indirect Language

The use of words that suggest the possibility of something happening, but not specifically
how so or when.

Examples:
 Should
 Could
 Sometimes

 Often
 Usually
 May

 As Appropriate
 Where Applicable
 Will

“Should” or
“Could”

The words “should” or “could” might signify ambiguity if the statement does
not explain the circumstances that must be present in which an event should
or could happen. If you include those circumstances in the requirement, then
that removes the ambiguity.

“May” The verb “may” is ambiguous because it is passive language. It could imply
that something must be as described, or it could imply that something could
be as described or could be something else entirely. For example, Consider
the example, “As an online poker player, I may win money, so that I am
rewarded for winning games.”

In this example, it is unclear as to the circumstances in which the online
poker player wins money. You clarify this user story by specifying that
information. Better is rewriting this user story to be, “As an online poker
player, I receive money when I win a game of poker against my
opponents, so that I am rewarded for winning games.”

“Will” “Will” is a sign of ambiguity if the statement does not specify when the event
will happen. Is it all of the time or just some of the time? If an event will occur
every single time, it is better to use the word “must”. If the event only occurs
some of the time, specify the conditions in which it does.

Vague Words

Vague Words are commonly actions, object names, or sayings that lack detail in the
description. It’s not that there could be multiple interpretations to decide among, it’s that there
is not enough specifics to make any interpretation.

Examples:
Vague Actions:

 Processed
 Handled
 Operated

Vague Objects:

 Item

 Entity

 Unit

Vague Sayings:

 As appropriate

 Where applicable

 Within reason

“Item”,
“Entity”, or
“Unit”

Either replace these terms with a more descriptive name, or ensure that the
term is defined in the product glossary and used consistently.

Client Needs and Software Requirements | 37

Completion Words

These words often imply that there are more members in a list that could be named but are
not for brevity.

Examples:
 And so on
 And so forth
 Et cetera
 Also

“And so on”,
“And so
forth”, and
“Et cetera”

Make sure that if you are listing things, you are completing the list with all
necessary details. Do not leave parts of the list up for interpretation.

“Also” This term is normally some addition to an existing statement. This ambiguity
normally results from getting the phrase out of context.

For example, consider the phrase, “As a document creator, I want to also
store the word document in the desktop folder, so that I can easily
access it”. It can be interpreted that the word document appears
somewhere else other than the desktop folder. It can also imply that another
document appears in the desktop folder along with the word document.
However, it can also mean that in addition to what I was doing, I also stored
the word document in the desktop folder. Or it could mean that all three occur
at once.

Normally, there would be a sentence before it that puts into context what the
“also” implies. However, your requirements should be able to stand alone
and be independant of each other. So make sure that if you use the term
“also” in a requirement that you provide the context as to what that “also”
means.

Persuasion Words

Words that try to persuade the meaning of a statement, or assume previous knowledge.

Examples:
 Clearly
 Certainly
 Obviously

“Clearly”,
“Certainly”, or
“Obviously”

If a statement is “obvious”, is it truly obvious to all readers? Why should the
reader believe it? Is the statement asserting an opinion, not fact? User
stories should not need to persuade, so avoid these words.

Client Needs and Software Requirements | 38

Qualifiers

These are words that may signify ambiguity because they qualify or modify some condition.

Examples:
 All
 Every
 Only

 None
 Never
 Always

 Sometimes
 Often
 Usually

“All” or
“Every”

The words “all” and “every” cause ambiguity for similar reasons. Consider
the following user stories, “As an admin, I want all social media users to
use an account, so that I can track their usage” and “As an admin, I
want every social media user to use an account, so that I can track their
usage”.

Both of these user stories could imply that all social media users are using
the same account, or they could imply that each user has their own account.

“Only” Use this word carefully, especially in the English language, because
depending on where the word “only” is put in a sentence, it could cause the
meaning to be totally different.

Consider the sentence, “Premium account holders are allowed to read
the full online article”. We can insert the word “only” into this sentence to
make it mean different things.

First, let’s place it at the beginning of the sentence to make the statement,
“Only premium account holders are allowed to read the full online
article”. This means that no other account holder is allowed to read the full
online article.

If we move the “only” to after the word “are”, we get the statement “Premium
account holders are only allowed to read the full online article”. This
now means that premium account holders are not allowed to read anything
but the full article. We can also get this meaning by moving the “only” to the
end of the sentence to create the statement, “Premium account holders
are allowed to read the full online article only”.

Now let’s move the “only” to after “the”. We now get the statement,
“Premium account holders are allowed to read the only full online
article”. This means that there is only one full online article available, and
the premium account holders are allowed to read it.

When using the word “only”, be careful that you are using it to modify the
sentence for the correct meaning.

Client Needs and Software Requirements | 39

Comparatives

Comparatives are phrases that are comparing two or more things.

Examples:
 [A] is the same as [B]
 [A] is bigger than [B]
 [A] is the biggest
 [A] is as big as [B]

 Words that end in –“er”
(i.e. bigger, smaller, taller, shorter)

 Words that end in –“est”
(i.e. biggest, smallest, tallest, shortest)

Be sure to be specific when you are comparing two objects. What specific attribute of the
objects is being compared? Also watch out if you use a word that ends in -er such as bigger,
smaller, or wider, or a word that ends in -est like biggest, smallest, or widest.

Quantities

These are words that may signify ambiguity because they quantify some condition.

Examples:
 A or An
 Some
 Most
 Few

“A” or “An” A or An are words that you encounter frequently. Consider the example, “As
a crossword puzzle solver, I want the application to have a crossword
puzzle, so that I can challenge myself in a diversion I enjoy”. Does “a
crossword puzzle” mean that there is only one crossword puzzle on the
application? Or does it mean that there will be at least one crossword puzzle
on the application? To avoid ambiguities with the words “A” or “An”, use
quantifiers such as a specific number or at least some minimum amount.

A better way to write this user story would be, “As a crossword puzzle
solver, I want the application to have at least one crossword puzzle, so
that I can challenge myself in a diversion I enjoy”.

“Some”,
“Most”, or
“Few”

These words signify ambiguity if the statement does not give a specific
quantity or which items are involved.

Client Needs and Software Requirements | 40

Pronouns

Pronouns are words that take the place of a noun.

Examples:

 He

 She

 It

 We

 You

 They

 Us

 Our

 This

 That

Pronouns lead to ambiguous phrases because it could be unclear the noun that the pronoun
is representing. For example, in the user story “As a virtual farmer, I want it to grow, so
that I can sell it for virtual funds.” It is unclear what the word “it” refers to. The word “it”
could refer to the virtual farm itself, the virtual crops, or the virtual farm animals. Instead of
using pronouns, you should define and use more specific terms to avoid confusion.

Positional Words

These are words that signify a position in some group or queue.

Examples:
 After
 Before
 Following, and

 Last

“After”,
“Before”, or
“Following”

For these words, the example of database entries will be used. If it is the
case that “Entry A appears before Entry B in the database”, that could
mean that Entry A appears directly before, or anywhere before Entry B in the
database. Similarly, it could be said that “Entry B appears after Entry A in
the database” or that “Entry B appears in the database following Entry
A”. All of these phrases are ambiguous for the same reason. You need to
specify where the entry appears more explicitly.

“Last” Again, using the database entries example, consider the phrase, “I am
making changes to the last entry”. The word “last” in this phrase leads to a
lot of ambiguity. This could mean that I am making changes to the previous
entry, or it could mean that I am making changes to the entry that appears at
the very end. Or it could mean that no more entries are going to be added,
and this entry will be the final entry.

Client Needs and Software Requirements | 41

Temporal Words

These are words that relate to time or events. You could also include some of the positional

words in this category if you are referring to time instead of position.

Examples:
 When
 For
 Until

 From
 Current
 Latest

“When” Consider the example, “As a runner, I want the lap timer to set to zero
when I start a lap around the track, so that I can monitor my pace”. This
could be interpreted to mean that the timer is set to zero at the time the
runner starts a lap. It could also mean that the timer is set to zero the first
time the runner starts a lap. But it could also mean that the timer is set to
zero each time the runner starts a lap around the track.

“For” Consider the example, “As a camper, I want the product to show the
weather for the next 3 days, so that I can see what the weather will be
while I’m camping”. This user story can be interpreted in two ways. One
way is that the product shows a three-day weather forecast. But another way
is that the product displays the daily weather during the next 3 days and
stops displaying after that.

Joining Words

These are words that combine 2 or more phrases or objects.

Examples:
 And
 Or
 Both

“And” Consider the user story, “As a retail merchant, I want to print clearance
signage, so that the store has a sale when it has too much merchandise
and when the seasons change.”. Does this mean that the store has a sale
when they have too much merchandise, and they have a sale when the
seasons change? Or does it imply a double condition in which the store only
has a sale when the store has both too much merchandise and the season is
changing?

In the first case, it is more clear to break the requirement into two separate
requirements to satisfy independently.

“Or” The issue with the word “or” is that it doesn’t distinguish what happens in
the case that both conditions are true.

There are many other words that may create ambiguous requirements, but the ones listed
above are the most common. If these words are used, the client should be asked to elaborate.

Scanning your user stories for specific words as signs of ambiguity is not the only way to
determine if you have unclear requirements.

Client Needs and Software Requirements | 42

Another great way to make sure both your requirements and your glossary are free of
ambiguities is to replace terms from your user stories with their glossary definitions. Do your
user stories still make sense? Does your glossary definition represent the term properly? By
doing this, you may discover that you need to add more terms to your glossary, redefine some
terms in your glossary, and/or rewrite some of your user stories.

Unclear language can also arise during discussions between the client, software product
manager, and development team. It is important for the software product manager to ask
questions to clarify discussions. Good questions include examining the truth of presented facts
and asking for elaboration on uncertain terms or certain points of perceived needs and
requirements. Determining what the client means and why is important to creating quality
requirements.

Client Needs and Software Requirements | 43

Copyright © 2015 University of Alberta.

All material in this course, unless otherwise noted, has been developed by and is the property
of the University of Alberta. The university has attempted to ensure that all copyright has been
obtained. If you believe that something is in error or has been omitted, please contact us.

Reproduction of this material in whole or in part is acceptable, provided all University of Alberta
logos and brand markings remain as they appear in the original work.
Version 1.0.2

